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Abstract— This paper deals with comparative analysis between 
two state observation methods: the multimodel and the neural 
state observation approaches. The multimodel state observer is 
deduced from the fusion of linear state observers for the local 
models of the process. This fusion is based on the concept of 
validity of each observer. The observation gain is obtained by the 
resolution of the Linear Matrix Inequalities (LMI) derived from 
the stabilization criterion using the Lyapunov approach.

As for the neural state observer, it is based in one hand on
neural identification of the non-linear system, and in the other
hand on a pole placement technique for calculating the gains of
state observation. For neural identification, we use a neural 
network with nonlinear parameters (RNPNL). This RNPNL is a 
multilayer feedforward neural network using the sigmoïdal 
activation function and the modified error backpropagation 
learning algorithm.

The proposed state observation techniques are applied to the 
nonlinear model of the induction motor to reconstruct the non-
measurable state variables and in particular the rotor flux.

Keywords— Multimodel state observer, neural state observer, 
LMIs, induction motor

I. INTRODUCTION

The state observation problem has been widely developed 
in the literature, and used in numerous applications. However 
in most cases, the state variables are rarely available for direct
online measurements. Furthermore, there is a substantial 
requirement for reliable reconstruction of the state variables, 
especially when they are required in the synthesis of control 
and observation laws or for process monitoring purposes [1], 
[2], [3].

However, in most realistic cases merely input and output of 
the system are measurable. Therefore, estimating the state 
variables by observers plays a crucial role in the control of
processes to achieve better performances [4], [5].

On the other hand, the state observation of dynamic 
systems depends on the complexity of the system and tools
implemented. If we can characterize and implement quickly 
and easily a state observer for a linear and stationary process,
it is not at all even on a non-linear or uncertain or time-
varying parameters [6], [7], [8]. It is then necessary to use 
other advanced methods of state observation [9], [10].

In this way, the multimodel approach appears as an 
interesting method to easier the representation of the complex 
system by using a set of simple models [11], [12], [13], [14]. 

On the other hand, neural network techniques have showing 
a good promise as competitive methods for signal processing, 
power systems and other applications [15], [16], [17]. Indeed, 
these techniques are efficient for approximating a wide range 
of nonlinear functions [18], [19].

In this article, we are interested by the observation of
nonlinear dynamical systems using two approaches that are
multimodel and neural networks. The approach of multimodel
state observation is based on the calculus of the validities. The 
observation gains are obtained by the resolution of LMI 
constraints.

The neural state observation approach is based on the fact 
that artificial neural networks have the universal
approximation property. Indeed, the objective is to design a 
neural network to approximate the non-linear part of the state
observer through the back-propagation algorithm, by adding 
some correction terms to the neural network (NN) weights 
tuning in order to guarantee the stability of the state observer 
and the NN weights errors [20], [21].

These two approaches: multimodel state observer and
neural state observer are applied to a physical process
constituted by an induction motor. This type of motor has a
nonlinear multivariable structure, making it difficult to control
[7], [22]. In addition, its internal state variables are not always
accessible to the measurement and in particular the rotor flux, 
hence, new techniques of state observation are needed [8],
[23].

In this work, we intend to prove the importance and the 
performance of advanced methods of state observation as 
neural approach. This study is based on the comparison 
between conventional and non-conventional techniques of 
state observation. It is noted that most practical systems are 
nonlinear and it is difficult to design a performant controller 
or observer. So far, the linearisation techniques can be used to 
overcome these problems. However, this linearisation can 
limit enormously the performances of such approaches of 
control and observation. In this case, the use of neural 
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networks permits to approximate suitably the nonlinear 
functions and then to bypass the linearisation problem thanks 
to three particularly interesting characteristics: adaptive, 
massively parallel and capable of generalization. Instead to 
the conventional multimodel state observation approach which 
present different difficulties as the annoying calculation, the 
choice of models base and the appropriate fusion technique.

This paper is organized as follows: the multimodel state 
observation of nonlinear systems is presented in the second
section, and then the neural state observation is considered in 
the third section. The last section is devoted to the comparison,
by numerical simulation, of the multimodel state observer and
the neural observer of process studied.

II. MULTIMODEL STATE OBSERVER
Consider the uncertain complex process described by the 

equations:
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

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tButAxtx

(1)

where A is the state matrix, B is the input matrix and C is the 
output matrix. x is the state vector, y is the output vector and 
u is the input vector.

This system can be described by several models  iM
(� = 1, … , � ) . Each of these models is represented by the 
following linear state equations:
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where N is the number of the base models, ix , iu et iy denote 
respectively the state, the input and the output vectors of the 
local model iM .

The reconstruction of the non measurable state variables is 
based on the Luemberger observer which has the following 
form:
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where ix̂ and iŷ are respectively the estimated state and 
output vectors of ix and iy .

The multimodel observer for the global system is given by:










)(ˆ)(ˆ
)](ˆ)([)()(ˆ)(ˆ

txCty
tytyLtButxAtx (4)                                           

where x̂ and ŷ are the estimated state and output vectors of x
and y.

L represents the multimodel observer gain determined by the 
fusion of the gains iL of the local observers which are 
weighted by the validity iv [24], [25] as following:
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The validities are given by the expression:
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where ir is the residue of the model iM , which is a quantity 
characterized the behavior of the model ( iM ) compared to the 
process, given by the expression:
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In order to favor the most pertinent models to the detriment 
of the worst ones, it is interesting to use the following 
strengthened and normalized validities [26]:

1


N
v

V
s
i

i � = 1, … , � (8)

where:

∏
≠,1

)-1(
N

sjj
ji

s
i vvv



 � = 1,… , � (9)

N is the number of base models.
The matrices A, B, C are obtained by fusion of those of the 

models iM , � = 1, … , � , such that:
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we consider xx ˆ the observation error.

The stability of the global system is conditioned by the 
convergence of the observation error to zero.
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According to Lyapunov theory, the global asymptotic 
stability of the system (11) is ensured if there exists a positive 
definite function V such that V be negative definite. 
We consider the quadratic function of Lyapunov [27]:

)()()( tPttV T  (12)

Indeed, the equation (11) is asymptotically stable if there exist 
a common positive definite matrix P such that [28] :
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where: iiiii CLAG  and jiiij CLAG  .

The observation gain can be obtained from the resolution of 
LMI constraints (13).

III. NEURAL STATE OBSERVER
In this section will propose the principle of designing a

neural state observer.
The key to design a neuro-observer is to employ a neural 

network to identify the nonlinearity and a conventional 
observer to reconstruct the state [29], [30].

The following graphic depicts the structure of the proposed 
neural network observer.

Fig.1 Structure of the designed neural network observer

Thus, for the design of a neural observer, we consider the 
nonlinear system governed in the state space by [30]:

   
   

,x t A x g x u
y t C x t





 
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(14)

A is the Hurwitz matrix; 
and  ,g x u is an unknown nonlinear function.

The pair  ,A C is assumed observable. A nonlinear state 
observer of system (14) is described by the following equation:

     
   

ˆˆ ˆ ˆ ˆ,
ˆ ˆ

x t A x g x u L y y
y t C x t
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

(15)

where ˆ ˆ,x y represent the state and the output observed. L is 
the gain observer chosen such that  A LC is a Hurwitz 
matrix.

Thus, applying the universal approximation property, cited 
in [31], a multilayer RN is sufficient for the identification and
modeling of the nonlinear function  ,g x u of system (14) 
with constant weights W and V such as:

     ,g x u W V z x   (16)
where :
  z x u ;

  . represent the activation function of the hidden layer ;

  x is the approximation error bounded   Nx  , 

and N is a known function in a compact set S. Moreover, for
any positive number N , we can find a RN such that  

  Nx  for all x S .
Note that the ideal weights W and V are bounded by

known values such as MW W and MV V .
The activation function of hidden layer is sigmoïdal:

  1
1 exp xx






The sigmoïdal function is bounded by m as:

  mx 

The nonlinear function g can be approximated by a
multilayer RN according to the following model:

   ˆ ˆˆ ˆ ˆ,g x u W V z (17)

The proposed neural observer is then given by:

     
   

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

x t Ax W V z L y y

y t C x t
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
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(18)
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To train the neural network, appropriate weights equations 
tuning are defined so that the stability of the proposed neural
state observer is guaranteed [30]. These weights equations
tuning are improved by correction terms as follows:

     ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
T

TV W V z I V z T e z k T e V    (19)

 ˆ ˆ ˆˆTW F e V z k F e W 

where:

 ˆe x x  is the error state estimation ;

 1 , 0T T TT G C C T T     ;

 2 , 0T T TF G C C F F     ;

IV. APPLICATION TO INDUCTION MOTOR
In this section, we apply the two precedent approaches to 

the model of the induction motor. 

A. Multimodel state observer of induction motor
The Park model of the induction motor in a reference frame, 

and under the assumption of unsaturated magnetic circuits, is 
a nonlinear system which is presented in the following form
[32], [33], [34]:
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where :
 Trrss IIX   is the state vector composed 

by the two components of the stator currant �� � 	and �� � , the 
two component in the rotor flux r and r , the rotor speed 
� and the two components of the stator voltage sV and sV ;

 Tss VVU  is the control vector;

 Tss IIY  is the output vector.
θ(t) is the vector of parameters involving the stator and rotor 
resistances.
The function f(X,U) and g(X) are given by :
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The nonlinear model, linearized around a nominal operating 
point characterized by the triplet (u0,x0,y0), is given by the 
following system:
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The matrix )(A , B and C can be written as follows:
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The rotoric and statoric resistances are defined in the 
presented ranges:

sss

rrr

RRR
RRR



The nominal values of resistances are given by:

2
RR

R

2
RR

R

ss
sn

rr
rn







We have so four local models taking in account the different 

combinations of ( )R,R,R,R ssrr and an average model using 

Rrn, Rsn.

We assume that the Rr and Rs change in a range of %50 of 
their nominal values as following:

245.1R415.0
065.2R688.0

s

r
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We calculate the local gains of the five local models using the 
LMI constraints (13) applied to (21), leads to: 


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61.04122638.035.0
1.02625915.016.0

82.038.015.025.024.0
104.035.016.024.03.0

P

B. Neural state observer of induction motor

The Park model of the study motor is presented in this form:
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where the functions  ,g x u ,  h x and the matrix A are 
given by:
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The RN is three layers where the input layer contains 5
neurons, 15 neurons in the hidden layer and output layer
contains two neurons that represent the two components of
rotor flux r and r .

The input of RN consist of two components of the stator 
current sI  and sI  , the two components of the stator 

voltage sV  and sV  and speed of rotation  .

The learning rate g and learning speed m values are 
respectively 0.2 and 0.4.

The poles placement of the matrix  A LC in:

 200, 201, 202, 203, 204    

leads to the following gain observation:

239.819 315.718 23.618
297.601 234.764 27.573
27.570 27.872 138.172

4.101 2.450 0.434
2.155 4.238 0.216

L
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 
 
  
 
  
    

The curves of Figures 2 and 3 show the simulation results
on the evolution of the rotor flux components  ,r r  

and their estimated  ˆ ˆ,r r   obtained using the 

multimodel observer and neuro-observer.
It is remarkable that the two observation approaches join 
quickly the real process with good performances and since the 
start of transient state of the motor.

It also appears from these simulations, that the neural state
observer joins the actual process faster than the multimodel
observer. Thus, we can conclude that the neural observer 
gives better performance when it comes to rebuilding the 
grandeur are not available for the measurement of nonlinear 
systems, it is more suited to this class of systems.

Fig.2 Evolution of r and its observers:
- Multimodel observer
- Neural observer
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Fig.3 Evolution of r  and its observers:

- Multimodel observer
- Neural observer

V. CONCLUSION
In this paper, we have presented two types of state

observers of nonlinear systems.
The first one, a multimodel observer, is based on linear fusion 
of partial observation laws using validities. The estimation of 
the validities uses the calculus of residues. The gain of such 
observer is obtained by the resolution of LMI constraints 
derived from the Lyapunov method.

The second type is a neural state observer based in one 
hand, on neural identification of the non-linear model of the
studied process, and in the other hand, on a pole placement
technique for calculating the gains of state observation.
It has been shown from the simulation results that the 
proposed state observers are efficients and permit the rapid 
reconstruction of the state variables of an induction motor and 
especially the rotor flux despite the strong nonlinearities 
affecting the studied process but with a light superiority of the 
neural observer compared to the multimodel state observer. 
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